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Abstract. Nehari’s most general univalence criterion |Sf(z)| ≤ 2p(|z|) requires the even
solution of u′′ + pu = 0 to have no zeros, and (1 − x2)2p(x) to be non-increasing on [0, 1).
In this paper, we show univalence under a weaker form of the second assumption, namely
that pu4 be non-increasing on [0, 1).

1. Introduction

Let f be a locally univalent analytic function on the unit disk D and let

Sf = (f ′′/f ′)′ − (1/2)(f ′′/f ′)2

be its Schwarzian derivative. We owe to Nehari the important discovery of the connection
between univalence, the Schwarzian derivative, and differential equations. Among his several
results in this area, the one we will generalize states the following.

Theorem 1 (Nehari’s p-criterion). Let p : (−1, 1) → R be a positive, even, continuous func-
tion satisfying the two conditions:

(a) the differential equation u′′ + pu = 0 has no solution with more than one zero in
(−1, 1) other than the zero solution;

(b) (1 − x2)2p(x) is nonincreasing on [0, 1).

If

(1) |Sf(z)| ≤ 2p(|z|) , z ∈ D ,

then f is univalent in D. The constant 2 in (1) cannot be replaced by a larger number.

See [4] and [5]. The choices p(x) = 1/(1 − x2)2 and p(x) = π2/4 give Nehari’s original
univalence criteria in [3]:

(2) |Sf(z)| ≤ 2

(1 − |z|2)2
and |Sf(z)| ≤ π2

2
.

Nehari put condition (a) in the form: “The differential equation u′′+pu = 0 has a solution
which does not vanish in (−1, 1).” This is easily seen to be equivalent to the condition as
stated in the theorem. It is a little more natural for us to work with the formulation we have
given. For example, we will make use of the solution of the initial value problem u′′+pu = 0,
u(0) = 1, u′(0) = 0. This function is even and we can then immediately assert that it is also
positive in (−1, 1).
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The main purpose of this paper is to prove:

Theorem 2. Let p : [0, 1) → R be a nonnegative, continuous function satisfying the two
conditions:

(a) the solution of u′′ + pu = 0 with u(0) = 1, u′(0) = 0 is positive on [0, 1);
(b) pu4 is nonincreasing on [0, 1).

If

(3) |Sf(z)| ≤ 2p(|z|) , z ∈ D ,

then f is univalent in D.

We refer to the class of functions p entering in Theorem 1 as Nehari functions. We shall
establish that Theorem 2 includes Theorem 1 by showing that the class of functions p entering
in Theorem 2 is broader than the class of Nehari functions. Condition (b) in Theorem 1 is
an artefact of Nehari’s proof and the same can fairly be said of condition (b) in Theorem 2 in
the proof we give, though, in more than appearance, the respective ways the conditions are
used are quite different. The proof of Theorem 2 will be given in Section 2. The relationship
between the two theorems will be discussed in Section 4.

One may wonder what kinds of nonincreasing functions of the form pu4 can appear in
Theorem 2. Quite a few. We will show:

Theorem 3. Let λ : [0, 1) → R be any positive, continuous, nonincreasing function. Then
there exists a positive constant c and a positive, continuous function p : [0, 1) → R such that
the initial value problem

u′′ + pu = 0 , u(0) = 1 , u′(0) = 0 ,

has a positive solution on [0, 1) satisfying pu4 = cλ.

The proof of this will be given in Section 3.
Nehari’s p-criterion has found still another life in [1] applying to lifts of harmonic mappings

to minimal surfaces. That is joint work with Peter Duren who has graciously both turned
70 and allowed us to independently offer this variant of the analytic case. We are pleased to
dedicate this paper to him. We are also grateful to the referee for a very thorough reading
of the paper and for many helpful comments.

2. Proof of Theorem 2

To prove Theorem 2 we appeal to the general univalence criterion in [6] specialized to the
case at hand. The ingredients are these: Let eσ|dz| be a smooth conformal metric on D, let
0 < δ ≤ ∞ be the diameter of D with respect to this metric, and suppose any two points in
D can be joined by a geodesic of length < δ. According to [6], if

(4) |Sf − 2(σzz − σ2
z)| ≤ 2σzz̄ +

2π2

δ2
e2σ ,

then f is univalent in D.
A complete metric has δ = ∞ and the condition becomes

(5) |Sf − 2(σzz − σ2
z)| ≤ 2σzz̄ .

The curvature of the metric isK = −e−2σ∆σ and this is where the term σzz̄ comes from. The
term 2(σzz−σ2

z), or rather the difference between Sf and this term, comes from changing the
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metric conformally from the Euclidean metric |dz| to eσ|dz| and from computing a generalized
Schwarzian that depends on the metric.

One can recover Nehari’s two original univalence criteria (2) by taking the metric eσ|dz|
to be, respectively, the Poincaré metric (curvature −4, diameter ∞; complete), and the
Euclidean metric (curvature 0, diameter 2; incomplete).

One can also recover Theorem 1 but this requires more work and was the main point of
[2]. It was in following up on some of the phenomena in that paper that led us to Theorem
2.

Under the assumptions of Theorem 2, let u be the positive solution on [0, 1) of u′′+pu = 0,
u(0) = 1, u′(0) = 0. We use u to define the radial conformal metric u−2(|z|)|dz| on D. It
follows from the fact that u−2(|z|) is radial and increasing that the metric disks about the
origin are convex, and hence that any two points in D can be joined by a geodesic. The
metric is complete if and only if

∫ 1

0

u−2(r) dr = ∞ .

The proof of Theorem 2 consists of showing that the bound |Sf(z)| ≤ 2p(|z|) in (3) implies
the inequality (5) for σ(z) = −2 log u(|z|). Since (5) is the stronger of the conditions (4)
and (5) we can conclude that f is univalent even if the metric is incomplete, i.e., if the
integral above is finite. However, while completeness is not needed for the proof of Theorem
2, we will show that the metric may be assumed to be complete in deducing Theorem 1 from
Theorem 2.

In terms of u and p the Gaussian curvature of the metric is

(6) K(z) = −2u4(r)(Au(r) + p(r)) , r = |z| ,

where

(7) Au(r) =

(
u′(r)

u(r)

)2

− 1

r

u′(r)

u(r)
, r = |z| .

The initial conditions on u imply that Au is continuous at 0, with Au(0) = p(0). Moreover,
because u′(r) ≤ 0 for 0 ≤ r < 1 the curvature is negative.

A straightforward calculation now shows that shows that (5) becomes

(8)
∣∣ζ2Sf(z) +Au(|z|)− p(|z|)

∣∣ ≤ Au(|z|) + p(|z|) , ζ =
z

|z|
,

and this is what we must establish. The role of the hypothesis that pu4 is nonincreasing is
to deduce the following inequality between Au and p.

Lemma 1. Under the assumptions (a) and (b) of Theorem 2,

(9) Au(r) ≥ p(r) , 0 ≤ r < 1 .

See [2] for a version of this lemma applying to Theorem 1.

Proof. For r > 0 rewrite Au(r) ≥ p(r) as

(10) ru2(r)p(r) ≤ r(u′(r))2 − u(r)u′(r) .
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Suppose that p(r) is C1. It suffices to prove (10) for the derivatives because both sides vanish
at r = 0. After some cancelations using u′′ + pu = 0, this is equivalent to

p′(r)

p(r)
≤ −4

u′(r)

u(r)
, 0 ≤ r < 1 ,

which holds because pu4 is non-increasing. Thus (10) holds, and since Au(0) = p(0), as
noted above, it follows that Au(r) ≥ p(r) for r ≥ 0. In the general case, when p is just
continuous, simply approximate p uniformly on compact sets by smooth functions. �

To finish the proof of Theorem 2, suppose that |Sf(z)| ≤ 2p(|z|). Then, because of Lemma
1, we have

∣∣ζ2Sf(z) +Au(|z|)− p(|z|)
∣∣ ≤ |Sf(z)| +Au(|z|)− p(|z|)

≤ 2p(|z|) +Au(|z|)− p(|z|) = Au(|z|) + p(|z|) .
Hence (8) holds, so that f is univalent in D.

3. Proof of Theorem 3

To prove Theorem 3, for any positive, nonincreasing, continuous function λ on [0, 1) we
must produce a positive, continuous function p so that,

pu4 = cλ ,

for some c > 0, where u is the positive solution on [0, 1) to the initial value problem

u′′ + pu = 0 , u(0) = 1 , u′(0) = 0 .

Our approach is to show that there is an α > 0 so that the solution to the initial value
problem

(11) w′′ + λw−3 = 0 , w(0) = α , w′(0) = 0

is positive on [0, 1). If so, we set p = −w′′/w, and then the function u = (1/α)w satisfies
u′′ + pu = 0, u(0) = 1, u′(0) = 0 and pu4 = cλ, where c = 1/α4.

To accomplish this we formulate the following comparison lemma.

Lemma 2. Let λ, ρ be positive, continuous functions on [0, 1) with λ ≤ ρ. Let w and v be,
respectively, the solutions of

w′′ + λw−3 = 0 , w(0) = α , w′(0) = 0 ,

v′′ + ρv−3 = 0 , v(0) = β , v′(0) = 0 ,

where α ≥ β > 0. Then w ≥ v up to the first zero of v.

Proof. First suppose that α > β with strict inequality. Let h = w′v − wv′. Then h(0) = 0,
and as long as w > v > 0 we have

h′ = w′′v − wv′′ = ρwv−3 − λvw−3 ≥ λ(wv−3 − vw−3) > 0 .

But h′ > 0 on an interval (0, a) implies that h > 0 and hence that w > v on (0, a). The
inequality w > v thus persists till the first zero a of v. Therefore the lemma obtains in this
case since initially w > v > 0 near the origin. The implication α ≥ β > 0 =⇒ w ≥ v up to
the first zero of v follows by a limiting argument. �
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This applies to the proof of Theorem 3 as follows. Since λ is nonincreasing,

λ(x) ≤ λ(0) = λ0 ,

and we conclude from the lemma that the solution u of (11) cannot vanish before the solution
of

v′′ + λ0v
−3 = 0 , v(0) = α , v′(0) = 0 .

This can be determined explicitly and is given by

v(x) =
1

α

√
α4 − λ0x2 .

The positive zero is x = α2/
√
λ0 and so to get a positive solution v (and hence w) on [0, 1)

we take

α ≥ λ
1/4
0 .

4. The relationship between Theorem 1 and Theorem 2

We now want to explain why Theorem 2 is more general than Theorem 1, first, specifically
under what circumstances the condition

(1 − x2)2p(x) is nonincreasing

in Theorem 1 implies the condition

pu4 is nonincreasing

in Theorem 2, and then how the latter is more encompassing.
The analysis of the first point depends on an important scaling phenomenon of Nehari

functions. It was shown in [2] that for any Nehari function p there exists a (maximal) value
t0 ≥ 1 such that t0p remains a Nehari function, the issue being whether scaling p to tp,
1 ≤ t ≤ t0 maintains the property that the equation u′′ + tpu = 0 has no nontrivial solutions
that vanish more than once in (−1, 1). The result can be described neatly in terms of the
extremal function associated with the criterion. For t ≥ 1 let u be the solution of u′′+tpu = 0
with u(0) = 1, u′(0) = 0, and define

Φt(x) =

∫ x

0

u−2(s) ds .

Then Φt(0) = 0, Φ′
t(0) = 1, Φ′′

t (0) = 0, SΦt = 2tp, and as long as tp remains a Nehari
function Φt is defined on (−1, 1). A result in [2] is that t0 > 1 if and only if Φt(1) < ∞ for
1 ≤ t < t0, and that for t0p we have Φt0(1) = ∞. Geometrically, this means that the metric
Φ′

t0
(|z|)|dz| is complete, and this is used in a number of constructions in [2].

Suppose now that the hypotheses of Theorem 1 hold. In any use of the theorem, since the
inequality |Sf(z)| ≤ 2p(|z|) trivially implies that |Sf(z)| ≤ 2tp(|z|) for t > 1, we can replace
p by t0p (if necessary) and assume without loss of generality that

(12)

∫ 1

0

u−2(s) ds = ∞

for the positive function u with

(13) u′′ + pu = 0 , u(0) = 1 , u′(0) = 0 .
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Under the assumption (12) we will now show that pu4 is nondecreasing on [0, 1), and it is
in this sense that Theorem 1 is subsumed by Theorem 2. Recall from the proof of Lemma 1
that to say pu4 is nonincreasing on [0, 1) is the same as

(14)
p′(x)

p(x)
≤ −4

u′(x)

u(x)
, 0 ≤ x < 1 .

This is the key inequality and we will work with several equivalent forms of it in what follows.
Let

q(x) = (1 − x2)2p(x) ,

and define

w(x) =
u(x)√
1 − x2

.

Then (13) leads to

(15) (1 − x2)((1 − x2)w′(x))′ = (1 − q(x))w(x) , w(0) = 1 , w′(0) = 0 .

We can write this more compactly by introducing the change of variables x(s) = tanh s,
0 ≤ s <∞, for which x′(s) = 1 − x2(s). With

ϕ(s) = w(x(s)) and ν(s) = q(x(s))

equation (15) is

(16) ϕ′′(s) = (1 − ν(s))ϕ(s) , ϕ(0) = 1 , ϕ′(0) = 0 .

The function ν(s) is nonincreasing because q(x) is nonincreasing, a hypothesis in Theorem
1, and it was shown in [2] that when (12) holds the solution ϕ of (16) is strictly decreasing
for s > 0. Therefore w is decreasing on [0, 1). But now a simple calculation shows that the
inequality (14) is equivalent to

(17)
q′(x)

q(x)
≤ −4

w′(x)

w(x)
,

and this will be true because q′ ≤ 0 ≤ −w′. To reiterate, in Theorem 1 when (12) is true,
which is no loss of generality, it follows that pu4 is nonincreasing.

Now let us show that just requiring pu4 to be nonincreasing – the second hypothesis in
Theorem 2 – allows for a larger class of functions p than the Nehari functions. To construct
examples it is easier to work with ν(s) and ϕ(s) and to write the inequality (17) as

(18)
ν′(s)

ν(s)
≤ −4

ϕ′(s)

ϕ(s)
.

We seek p such that:

(i) The corresponding function ν(s) fails to be nonincreasing, but still
(ii) The solution ϕ of (16) is positive, and
(iii) pu4 is nonincreasing, i.e., (18) holds, and, moreover, (12) also holds.

It is ϕ that we will find.
Examples of interest will have ν(s), and therefore q(x) = (1−x2)2p(x), oscillate infinitely

often around the value 1. In effect, if ν(s) < 1 for all s > s0, then p(x) < 1/(1 − x2)2 for
x > x0, a case in some sense already known, while, on the other hand, ν cannot remain
larger than 1 too long without forcing ϕ to vanish. Oscillations of ν around 1 force ϕ to
change concavity infinitely often, and this is the clue.
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We can be explicit. We begin with a function of the form

ψ(s) = e−as(1 + b sin s) .

Tedious but simple calculations show that there is a crescent-shaped region near the origin in
the first quadrant of the ab-plane consisting of points (a, b) such that ψ is positive, decreasing
for s > 0, changes concavity infinitely often, and satisfies the corresponding version of (18),
namely

(19)
µ′(s)

µ(s)
≤ −4

ψ′(s)

ψ(s)
,

when µ = 1− (ψ′′/ψ). Furthermore, since ψ(s) → 0 as s→ ∞, it follows that w(x) (defined
using this ψ) also tends to 0 as x→ 1, whence (12) is valid.

This almost suffices, but we require a small modification to satisfy the initial conditions
in (16) while not destroying the other properties. To achieve this, take a point s1 where
µ(s1) > 1 and let

µ1(s) =

{
µ(s1) , s ≤ s1

µ(s) , s1 ≤ s .

Now let ψ1 be the solution of

ψ′′
1(s) = (1 − µ1(s))ψ1(s) , ψ1(s1) = ψ(s1) , ψ

′
1(s1) = ψ′(s1) .

That is, we keep ψ(s) for s1 ≤ s and smoothly attach a trigonometric function for s ≤ s1.
Let s0 < s1 be the point where the first maximum of ψ1(s) occurs. Since ψ′

1(s1) = ψ′(s1) <
0 we know that ψ1(s) decreases from s0 to s1, and hence this modification of ψ does not
destroy the inequality (19) for s0 ≤ s ≤ s1 because the left hand side vanishes while the
right hand side is positive. Finally, by defining the functions

ϕ(s) =
1

ψ1(s0)
ψ1(s+ s0) , ν(s) = µ(s+ s0) ,

we shift s0 to the origin and scale. The functions ϕ and ν satisfy

ϕ′(s) = (1 − ν(s))ϕ(s) , ϕ(0) = 1 , ϕ′(0) = 0 ,

as well as (18) and (12). This completes the example.
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